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A Method for the Liapunov Stability Analysis of

Force-Free Dynamical Systems

LeonarDp MEIROVITCH*
University of Cincinnati, Cincinnaiti, Ohio

A new method for the stability analysis of force-free dynamical systems described by simul-
taneous sets of ordinary and partial differential equations of motion is presented. Such sys-
tems, referred to as hybrid, arise naturally in connection with the motion of spinning flexible
bodies. The method is based on Liapunov’s second method and works directly with the hy-
brid system of equations. It involves the construction of a Liapunov functional that takes
into account automatically motion integrals resulting from the absence of external forces on
the system. The general theory is particularly suitable for the stability analysis of torque-free
spinning satellites containing distributed elastic members. As an illustration, the case of spin
stabilization of a satellite with flexible appendages is solved.

Introduction

HE rotational motion of a torque-free rigid body is known

to be stable if the rotation takes place about an axis cor-
responding to the maximum or minimum moment of inertia,
but the motion is unstable if the rotation takes place about
the axis of intermediate moment of inertia (see, for example,
the text by Meirovitch,! Sec. 6.7). The stability of a force-
free system of bodies, where the bodies can rotate with dif-
ferent angular velocities, has been investigated by Pringle,?
who placed special emphasis on dual-spin systems. A matrix
formulation of the problems just deseribed has been provided
by Likins and Roberson.* The effect of elastically connected
moving parts on the stability of motion of a rigid body has
been studied by Nelson and Meirovitch.* The formulations
of Refs. 1-4 are in terms of ordinary differential equations and
the stability analyses are based on the Liapunov direct
method. Flexible parts are represented in the last three
references by diserete models.

In one of the first attempts to treat rigorously distributed
elastic members, the stability of motion of a spinning sym-
metric body which is part rigid and part elastic has been in-
vestigated by Meirovitch and Nelson.? The mathematical
formulation in Ref. 5 consists of a set of ordinary differential
equations for the rotational motion and another set of partial
differential equations describing the elastic displacements.
We shall refer to a system of both ordinary and partial dif-
ferential equations as “hybrid.”” The hybrid system of Ref. 5
has been reduced to a system consisting entirely of ordinary
differential equations by means of the modal analysis,
whereby the displacement of a given point in the continuous
elastic members is represented by a finite series of appropriate
eigenfunctions multiplied by time-dependent generalized co-
ordinates. The stability of the resulting discrete system
has been investigated by means of an infinitesimal analysis
and the effect of the flexible parts on the motion stability has
been displayed in the form of diagrams relating various
parameters of the system.
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A general and rigorous method for the stability analysis of
systems containing distributed elastic parts has been de-
veloped by Meirovitch.® The method represents an exten-
sion of the Liapunov second method and works directly with
the hybrid system of differential equations (in the sense de-

< fined previously), instead of the common practice of spatial

diseretization®?® or modal truncation.® As an application, the
case of gravity-gradient stabilization of a satellite with flex-
ible appendages is solved.

The present paper extends the formulation of Ref. 6 to the
case in which the system possesses angular momentum in-
tegrals. The formulation is somewhat related to the problem
of Ref. 3. However, whereas the formulation of Ref. 3 is re-
stricted to discrete systems but can accommodate multispin
bodies, the present formulation is confined to single-spin but
permits the treatment of distributed elastic systems. This
new formulation can be readily used for a large class of prob-
lems involving the stability of torque-free flexible satellites.
As an illustration, the general theory presented here is applied
to the stability analysis of a spinning satellite resembling that
of Ref. 5. The power of the method is clearly demonstrated
by the fact that it permits the derivation of closed-form
stability criteria, in contrast with the criteria of Ref. 5 ob-
tained numerically. In addition, the results derived here are
more general in nature, as certain restrictions placed on the
system of Ref. 5 have been relaxed. As expected, a com-
parison of the criteria derived by means of the present method
with those derived in Ref. 5 using an infinitesimal analysis
reveals that the present method leads to more stringent but
more complete stability requirements.

General Problem Formulation

Let us consider a body of total mass m moving relative to an
inertial space XYZ, as shown in Fig. 1. The entire body or

Fig. 1 The flexible body in an inertial space.
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parts of the body are capable of small elastic deformations
from a reference equilibrium position coinciding with the
undeformed state of the body. Next we define two sets of
body axes, the set zyz with the origin at point 0-and coinciding

with the principal axes of the body in the undeformed state,

and the set £ which is parallel to zyz but has the origin at
the center of mass ¢ of the deformed body. We note that &x¢
is not a principal set of axes. The set zyz serves as a suitable
reference frame for measuring elastic deformations whereas
the set £7¢ is more convenient for expressing the over-all mo-
tion. The position of a typical point in the undeformed body
relative to axes xyz is denoted by the vectort r = zi -+
yj + 2k and the elastic displacement of an element of mass
dm, originally coincident with that point, by the vector
u = ulz,y,z,i + vlz,y,20j + w,yzhk, where i, j, k are
unit vectors along axes z, y, z (or axes £ n, {), respectively.
The radius vector from point 0 to cis given byr, = m=1f,.(r +
wdm = m~f,udm, where we note that f,.rdm is zero by
virtue of the faet that 0 is the center of mass of the unde-
formed body. All integrations involved in this paper are
carried over the domain occupied by the body in undeformed
state, which is designated as the reference state.

From Fig. 1, we conclude that the position of the mass
element dm relative to the inertial space is Ry, = R, +
r + u,, whereu, = u ~ r, = %i + 0.j + wk represents the
displacement vector measured with respect to axes &9¢ and
R, is the position of the origin of these axes relative to the
inertial space. Assuming that axes zyz, hence also axes £nf,
rotate with angular velocity ® = wd + w,j + ok relative to
the inertial space, and denoting by @.” = U, + v.j 4 1.k the
velocity of dm relative to &n{ due to the elastic effect, it is
shown in Ref. 6 that the kinetic energy has the expression

T = §fRo-Radn = IR R, + Jo-Joo +
[ X fult + u)l-u/dm + 3fu-0/dn (1)

where Jq is the inertia dyadic of the deformed body about
axes £9¢. The elements of the dyadic are

Jee = Sully + v)* + (2 + wo)?ldm (22)
I = ful@ + u)? + (2 + we)2ldm (2b)
o = Sulle + uo)? + (y + v.)*ldm (2c)
Jeg = Jot = Sule + w)y + v)dm (2d)
Jer = T = fule + u)(@ + w)dm (2¢)
I = Jen = Suly + 0) (2 + we)dm (2f)

The kinetic energy ean be written conveniently in terms of
matrix notation. If {&.} is the column matrix corresponding
toR., {&} the column matrix corresponding tow, [J] the sym-
metric matrix whose elements are the elements of the dyadic
Ja, and {u.’} the matrix representation of the vector &/, then
Eq. (1) can be rewritten in the form

T = §m{RJ7{R:} + 3{o} 7 1{w} +
{K)7{o} + 3fmfu} 7 {utdm  (3)

where {K} is the column matrix with the elements

Ky = [ally + o) — (2 + wo)dcldm (4a)
K, = [al + w)ic — (v 4+ wsldm (4b)
Ky = ful@ 4 udvc — (y + vo)iic]dm (4¢)

The angular velocity components we, w,, w¢ do not represent
time rates of change of certain angles but nonintegrable
combinations of time derivatives of angular displacements.
They are sometimes referred to as time derivatives of quasi-
coordinates. Denoting by 8; and 8; (i = 1,2,3) the true angu-

T Vector quantities are denoted by boldface type.
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lar displacements and their time rates of change, the angular
velocity vector can be written in the matrix form {w} =
[61{6}, where {6} is the column matrix with elements 6,(; =
1,2,3) and [8] is a 3 X 3 matrix, whose elements depend on
the order of the three rotations 6; used to produce the orienta-
tion of axes &n¢ relative to an inertial space. In view of this,
the kinetic energy can be written in terms of true angular
velocities as follows

T = im{R}7{R} -+ ${6}7111{6} +
(L3780} 4 3fnlu} ol dm  (5)
in which the notation

(71 = [6171718), {L} = [617{K} (6)

has been adopted.

The potential energy arises primarily from two sources,
namely gravity and body elasticity. The gravitational po-
tential energy is assumed to be very small compared with the
kinetic energy, or the elastic potential energy, and will be
ignored. The elastic potential energy, denoted by Ver and
referred to at times as strain energy, depends on the nature
of the elastic members and is in general a function of the
partial derivatives of the elastic displacements u, », w with
respect to the spatial variables z, y, 2. Since u., v., w. differ
from w, v, w by ., y., 2., respectively, where the latter are in-
dependent of the spatial variables, Vs can be regarded as
depending on the partial derivatives of u,, v., w. with respect to
z,y, 2. We assume that Vg is a funetion of 0%u,/0z2% 0%,/
Axdy, . .., 0*w./Jz® but this assumption in no way affects the
generality of the formulation. This particular functional
dependence of Vgr should be regarded as mere scaffolding
used in the construction of a general theory, as the final
formulation is expressed in a form which involves the partial
derivatives only implicitly.

The system differential equations can be obtained by
means of Hamilton’s principle. To this end, a brief discussion
of the generalized coordinates is in order. The motion of the
mass center ¢ is generally assumed not to be affected by the
motion relative to ¢, so that it is possible to solve the motion of
¢ independently of the motion relative to ¢. As a result, the
motion of ¢, referred to as orbital motion, can be regarded as
known. We shall confine ourselves to the case in which the
first term on the right side of Eq. (5) reduces to a known con-
stant, so that the term can be ignored. This is clearly the
case when the orbit is circular, or the motion of ¢ is uniform or
zero. It follows that the system generalized coordinates are
the three rotations 6;() and the three elastic displacements
uo(2,9,2,0) ve(x,y,2,8), we(z,y,20). The elastic displacements
are defined only throughout the domain D., namely the sub-
domain of D corresponding to the elastic continuum, where D
is a three-dimensional domain corresponding to the entire
body. The domain D, is bounded by the surface S.

For the holonomic system at hand, Hamilton’s principle
has the form

t2
6ftlLdt=0 )

where the motion must be such that the end conditions
061 = 80y = 605 = du, = v, = dw, = 0 at ¢t =, (8)

are satisfied. The integrand L in Eq. (7) is the Lagrangian
which has the general functional form

L=T-— VEL = fpﬁ(ﬂi,éi,uc,vc,, . .,u')c, .
O,/ DL2,0%e/ DDy, . . ., O*W./V2%)dD  (9)
in which I is the Lagrangian density.
An application of Hamilton’s principle leads to the system

Lagrangian equations of motion. Details of the derivation
are given in Ref. 6 and will not be repeated here. Instead we
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quote directly from Ref. 6 the ordinary differential equations
for the angular displacements

JL/d6; — (d/dt)y(L/db:) = 0, i =123 (10)

and the partial differential equations for the elastic displace-
ments R
OL/du. — (0/0t)QL/dits) + Lueltdeyve,we] + Que = 0 (11a)

dL v, — (2/0) (DL, d6e) + Luglttereswe] + Qo = 0 (11b)
dL /0w, — (2/0t)(DL/dte) + Luelttereswe] + Que = 0 (11c)

where Eqgs. (11) must be satisfied at every point of the domain
D.. Moreover, Eqs. (11) are subject to the boundary condi-
tions

B]'[?,Lc,va,’wc]'Bk[uc,vc,wc] = 0 on S)J = 1!2) k = 374 (12)
The differential operators £(Lu,LosLue)y; Bi(BiueyBive;Biwe)s

and Bi(Bxus, Biu, Biwe) represent vectors defined by the fol-
lowing integration by parts

oL d%u, oL %,
fDl:a(bzuc/bxz) 5(63:2) + 9(0%u./ 0xyY) 5 (bxby) Tt

biz %,
s b (55) 0 = [ St swid. +

B; [Ue,ve,Wo ] - Bi[te,ve,we]]s, § = 1,2; k& = 3,4 (13)

Since in our case the boundary conditions result from two
integrations by parts, only two of the combinations in Eq.
(12) must be satisfied at every point of S, where the indices
j and k are different for each combination. We note that the
partial derivatives 0%u., 0x? O%u./02dy,..., d*w./dz? enter
into Egs. (11) and (12) only implicitly through the differential
operator vectors £, B;, and By, thus lending substance to a
statement made earlier regarding the generality of the formu-
lation. The quantities Quc, Q%, ch represent distributed
internal damping forces which depend on the elastic motion
alone and not on the rotational motion. It should be pointed
out that the damping forces were added afterward, as such
forces cannot be treated by means of Hamilton’s principle.
Introducing the generalized momenta

po, = 0L/06;, 7 =123
Pue = OL/Qtic, Poe = OL/Ws, Pu, = L/,
where the latter three are momentum densities, it is shown in
Ref. 6 that the second-order Lagrangian equations, Eqgs. (10)

and (11), can be converted into twice the number of first-
order Hamiltonian equations having the form

6; = OH,Ops, po = —OH/D6;, i =123 (15a)
tie = OH/Opus, Ve = OH,0p, W = O /Opu,
Bue = —OH /DU + Lop(tteve0e) + Qu,
oo = —OH 0. + L0, (teype,w) + Q. (15b)
Pwe = —bfl/bwc + Lowe(e,ve,we) + ch

where Eqs. (15b) must be satisfied at every point of D.. In
Eqs. (15), H is the Hamiltonian defined by

(14).

3
H= 3 b+ [, Bucic + B + puab)aD, — L (16)
= e
and H is the corresponding Hamiltonian density. It should be
noticed here that the Hamiltonian has a hybrid form as it is a
function and a functional at the same time. The equations
for the elastic motion are subject to the same boundary condi-
tions, Egs. (12). When the kinetic energy is quadratic in the
generalized velocities, the Hamiltonian reduces to the form

H=T+ Vg 17
which is recognized as the system total energy.
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Stability Analysis

A general and rigorous method for the stability analysis of
hybrid systems of equations has been developed in Ref. 6.
We shall not present all the details here but only summarize
the main features.

Consider the system ¥ = X(x) in which x represents an
element in a space which for a hybrid system can be regarded
as the cartesian produet of a finite dimensional vector space
and a function space, and define a sealar function U(x) such
that U(0) = 0. The total time derivative of U along a tra-
jectory of the system is defined by U = dU/dt = VU -x =
VU-X. Next consider the following theorems:

Theorem I: If there exists for the system a positive (nega-
tive) definite function U(x) whose total time derivative
U(x) is negative (positive) semidefinite along every trajectory
of the system, then the trivial solution x = 0 is stable.

Theorem II: If the conditions of Theorem I are satisfied
and if, in addition, the set of points at which U/(x) is zero con-
tains no nontrivial positive half-trajectory, then the trivial
solution is asymptotically stable.

Theorem II1: 1f there exists for the system a function
U(x) whose total time derivative U(x) is positive (negative)
definite along every trajectory of the system and the function
itself can assume positive (negative) values in the neighbor-
hood of the origin, then the trivial solution is unstable.

Theorem IV: Suppose that a function U(x) such as in
Theorem T1I exists but for which U(x) is only positive (nega-
tive) semidefinite and, in addition, the set of points at which
U(x) is zero contains no nontrivial positive half-trajectory.
Moreover, in every neighborhood of the origin there is a
point x, such that for arbitrary { > 0 we have U(x,) >
0(<0). Then the trivial solution is unstable and the trajecto-
ries x(Xq, to, ) for which U(x,) > 0(<0) must leave the open
domain [|x]| < e as the time ¢ increases.

A funetion U satisfying any of the preceding theorems is re-
ferred to as a Liapunov function. For a hybrid system it is
both a function and a functional simultaneously but will be
referred to as a Liapunov functional.

Using the results derived in the section General Problem
Formulation, it is not difficult to show that

H = f5.Quitic + Qube + Quabe)dD. (18)

It is reasonable to assume that the damping forces Que, Qe
Q.. are such that H is negative semidefinite

H<0 (19)

Moreover, due to coupling, the damping forces are never
identically zero at every point of the phase space except at an
equilibrium point, where the phase space, denoted symboli-
cally by 8, is the space defined by the generalized coordinates
and the conjugate momenta, or alternatively the generalized
coordinates and velocities. In view of this, the Hamiltonian
may qualify as a Liapunov funetional. Indeed, according to
Theorem II, if H is positive definite at an equilibrium point,
then the equilibrium is asymptotically stable and H can be re-
garded as a Liapunov functional. On the other hand, if H
is not positive definite and there are points for which it is
negative, then by Theorem IV the equilibrium point is
unstable.

The equilibrium points of the system are the solution of the
equations

OH,dps; = 0, — 0H,08;, =0, i =123 (20a)
dH ) 0pu, = 0 /0ps, = DL /Opu, = 0
- g ¢ u, cyVe,We | = 0
OH /0us + Loy [Ueyve,We] 20b)

— DA /00, + Loolte,ve,we] = 0
— dH /oW, + Luyltte,ve,we] = 0
where Eqgs. (20b) must be satisfied at every point of D..
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Assuming that in the elastic potential energy the displace-
ments u, v, w (hence u., v., w,) are independent of one another,
it is shown in Ref. 6 that

Ver = 3fpuLuful + v8.[v] + wls[wldDe >
%fDep(A1u2uc2 + A1v27)02 + A1w2wc2)dDe (21)

where p is the mass density and Aw?, A%, Aw?® are the lowest
eigenvalues associated with the vibrations u, v, w, respectively.
Hence, let us introduce the functional

K = T + %fDep(A1u2u¢2 + A1v2002 + A1w2wc2)dDe (22)

Now, because H > «, it is sufficient to show that « is positive
definite for the system to be asymptotically stable.

Systems Free of External Forces

When there are no motion integrals, the state at time ¢ of
the hybrid system considered is given by an element in a
space S which can be regarded as the cartesian product of the
finite dimensional vector space defined by 6;, pe; (¢ = 1,2,3)
and the function space defined by wue, ve, We, Ducy Boey Duer
The space S is simply the phase space. Alternatively, the
space can be regarded as the cartesian product of the vector
space defined by 6;, 8:(¢ = 1,2,3) and the function space de-
fined by e, ve, We, e, Ue, We. The motion of the system can be
interpreted as a continuous mapping of the space S onto it-
self. This implies that if the state of the system at a given
time is known, then the state is known for any subsequent
time.

Under certain circumstances the system possesses motion
integrals. For example, such integrals oceur when the system
is free of external forces, in which case the motion integrals
are simply momentum integrals. These integrals can be re-
garded as constraint equations relating the system velocities.
Constraints may be interpreted as restricting the motion to a
subspace of a correspondingly smaller dimension. '

Let us assume that the system considered is free of external
forces, so that the three torque components about the mass
center ¢ are zero. It follows that the angular momentum
vector about ¢ is conserved '

L= far +u) X [u' +0 X+ u)ldn
B = const (23)

in which § denotes the constant angular momentum veector.
In matrix notation, Eq. (23) assumes the form

TN} + {K} = {8} (24)

where [J]is the inertia matrix of the deformed body, namely,
the matrix representation of the inertia dyadic whose elements
are given by Eqs. (2), and {K} is the column matrix of the
angular momentum components due to the elastic motion;
the elements of {K} are given by Eqgs. (4). Clearly, {8} is
the matrix representation of the vector 8.

Equation (24) can be used to eliminate the angular veloci-
ties 8:;( = 1,2,3) from the kinetic energy. Indeed, premulti-
plying Eq. (24) by [J]7 and rearranging, we obtain

{w} = [J]7{8 — K} (25)

Introducing Eq. (25) into Eq. (3), and ignoring the term due
to the orbital motion, we can write the kinetic energy in the
form

Il

T=T+T (26)
in which

T = 3fnlu}?{uctdm — ${K}TTIHK} (20)
is a quadratic expression in the elastic velocities ., ¥, 1., and
To = ${B8}7J17{B} (28)

is an expression in the angular coordinates and elastic dis-
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placements alone, hence it contains no velocities. It turns
out that not all three angular coordinates are present in 7,
but only two of them. To show this, we denote by 8, the
magnitude of the initial angular momentum vector, assume
for convenience that the direction of the angular momentum
vector coincides initially with the inertial axis Z, and express
the angular momentum matrix {8} in the form Bo{l}, where
{1} is the column matrix of the direction cosines lz, I,z, liz
between Z and axes £, 7, {, respectively. These direction
cosines can be expressed in terms of only two angular co-
ordinates.

Inserting Eq. (26), in conjunction with expressions (27)
and (28), into Eq. (22), we conclude that the functional « can
be written in the form

K=K + Kp (29)
in which ¥, = T and
ks = Ty 4+ 5fpp(Ar2ue? + A®? + An2w)dD, =
BHUTIIHY + 3 poplu.} TIA2]{uldD,  (30)

where {u,} is the column matrix of the elastic displacements
Ue, Ve, We and [As2] is a diagonal matrix of the lowest eigen-
values associated with these displacements. The functional
s can be regarded as a modified dynamic potential. By virtue
of inequality (21), we conclude that «» is in general smaller
than (or equal to) the ordinary dynamic potential Ty + Vr.

But for T to be positive definite for all {8}, T» must be
positive definite for all {u,}. Hence, we conclude that to show
that « is positive definite it is sufficient to show that k. is
positive definite. To establish the positive definiteness of «s,
we consider the possibility of constructing a density function
k2 associated with «, for every point of the elastic domain D,
and attempt to prove that the function is positive definite at
every such point. The conditions for the positive definite-
ness thus obtained are generally more stringent than neces-
sary.

To obtain the testing density function &, we recall that the
inertia matrix [J] of the deformed body contains the elastic
displacements u., v, w., which are assumed to be small. De-
noting by [J], the inertia matrix of the body in undeformed
state and by [J]; the change in the inertia matrix because of
the elastic deformations, we have

=0+ Jh (31)

Since [J]; is small compared with [J]y, it is not difficult to
show that

Kl=[I'= ™" = Wb L™ +
VT hTh ThT L™ (32)

where [K] denotes the reciprocal of [J]. We shall be con-
cerned with the case in which it is possible to define the density
matrix [K] satisfying the relation

K] = fp.IK)dD. (33)

so that the testing density function can be written in the form

R = F0HUTIKNL + $o{u.) T1A2]{uc} (34)
To test the density function #; for positive definiteness in the
neighborhood of an equiliprium point E, we define the 5 X 5
Hessian density matrix [3C]z as the matrix of the coefficients
associated with the quadrafic form #|p, where the latter is
simply the value of &; in the neighborhaod of the equilibrium
point in question. The positive definiteness of [@]E can he
ascertained by means of Sylvester’s criterion (see Ref. 1, Sec.
6.7).

At this point it is appropriate to mention that it is not al-
ways possible to construct the density function #. In some
cases the difficulty lies in defiping a density matrix [K], dif-
ficulty which ean be traced to the last term in Eq. (32). How-
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ever, this problem may be overcome at times by judicious use
of Schwarz’s inequality for functions. In other cases the dif-
ficulty is caused by coupling of the elastic displacements.
Such coupling can be introduced by the motion of the mass
center of the deformed body relative to the undeformed
state. It must be pointed out, however, that in many analy-
ses the motion of the mass center is ignored by virtue of the
assumption of antisymmetric motion. Hence, when the
assumption of antisymmetric motion can be safely made, this
difficulty can be circumvented with ease. The question re-
mains as to the procedure to be used when problems en-
countered in the construction of the density function &, can-
not be overcome. In such cases it may be advisable to use
modal analysis in conjunction with series truncation (see, for
example, Ref. 5) in order to derive a Hessian matrix [3C]z.
To this end, we refer to Eqs. (17) and (26), consider the test-
ing function H, = Ty 4+ Vs, solve the eigenvalue problem
associated with the vibrations «, v, w, and represent these dis-
placements by finite series of corresponding eigenfunctions
multiplying generalized coordinates. However, whereas the
Hessian matrix derived from Eq. (34) is a 5 X 5 density
matrix, the Hessian matrix obtained by modal analysis is not
a density matrix and its order is at least 5 X 5, the order de-
pending on the number of eigenfunctions used in the series
representing the elastic displacements. It must be stressed
that in general it is much more laborious to obtain the Hes-
sian matrix by modal analysis than the Hessian density ma-
trix associated with Eq. (34). This statement is particularly
true when the eigenvalue problem associated with u, v, w
cannot be readily solved.

Stability of High-Spin Motion of a
Flexible Satellite

As an illustration of the method presented, we shall in-
vestigate the stability of a spinning satellite simulated by a
rigid body with two flexible thin rods, as shown in Fig. 2a.
In undeformed state the body possesses principal moments of
inertia 4, B, C about axes z, y, 2, respectively, and the rods
are aligned with the z axis. The body is initially spinning un-
deformed about axis z with angular velocity Q,. The problem
resembles that of Ref. 5 but, by contrast, the solution of Ref. 5
is obtained by means of an infinitesimal analysis under re-
strictive circumstances. Specifically, the body considered in
Ref. 5 possesses equal moments of inertia about axes z and y
and, moreover, the elastic motion is assumed to be antisym-
metric, so that point ¢ coincides with point 0 at all times. No
such restrictions are placed here. The mathematical model is
the same as that used in the illustrative example of Ref. 6.
However, whereas in Ref. 6 the case of gravity-gradient
stabilization was investigated, here the spin stabilization is
being considered.

The domain of the elastic continuum is simply D.:h < z <
h+1,—(+1) <z< —h Hence,r=zi-+ yj+ 2kover
D — D.andr = zk over D,. Assuming only flexural trans-
verse vibration, it follows that u = ui 4+ vj, so that u, =
ud + vjandr. = zi + y.j. From Egs. (2) we conclude that

Fig. 2 a) The flexible satellite: b) the satellite rotational
motion.
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Fig. 3 Stability regions in the parameter plane.
the moments and products of inertia of the deformed body
have the values
Jeg = A + fp.ovide, Jp, = fp.pundz
Jm = B + Sfppuldz, Jg = [p.pzude (385)
Jeo = C + Spo(u? + v2dz, Joo = Sppe.dz
so that

A 0 0
[Jlo=]0 B 0
L0 0 C (36)
Sovdz —fpuwdz —fozudz
Jh = =fouvdz  foulde —fpev.dz
| —Spzudz  —fpzvdz So(ud + vHdz

where all integrations in [J]; are carried over D..

We are interested in the stability of pure spin about axis 2.
The equilibrium configuration corresponding to pure spin is
given by

E:0,=00#=12) and u.=v, =0

Since in the equilibrium configuration the body spins about
axis z with angular velocity €,, where z coincides with the
inertial axis Z, it follows that 8y = CQ,. Moreover, from
Fig. 2b we conclude that the direction cosines have the values
lgz = —cosb, sindsy, [,z = sindy, and Iz = cosé; cosf. Intro-
ducing all these values into the first term in Eq. (30), con-
sidering Eq. (32), and ignoring terms in 6, 6, u., and v, of
order larger than two (as well as constant terms), we can
write

BHITIK {1} e = Q,2[(C/B)(C — B)6:* +
(C/4)(C — A0 — [p.p(us + v2)dz +
(1/A)(fp.pzucdz)? + (1/B)(fp.pevedz)? —
2(C/A) 6. p.pzu.dz + 2(C/B)6:fprv.dz]

We notice that in the above expression there are two terms
involving squares of the integrals fppzu.dz and fp.pzv.dz,
which prevents a ready definition of a density function.
Using Schwarz’s inequality for functions, we have

0 < (fp.p2ucdz)? < fp.pz*def p.ouctde

where the first equality sign holds if u. is symmetric in z and
the second one when u, is proportional to z. Since in rota-
tional motion the elastic displacement w, is not likely to re-
main symmetric at all times, and, moreover, u. cannot be
proportional to z, it follows that both equality signs must be
ignored. Introducing the notation A: = fp.ez’dz, where A,
is recognized as the moment of inertia about axis z of the
mass associated with the elastic continuum when in unde-
formed state, we can write

(fppzucdz)? = auAifppulde, 0< au<l1
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Similarly, we have

(S p.pevdz)? = a,Bifp.ov2dz,

Although B; = A, we introduced a different symbol to keep
the notation consistent. Inserting these expressions into Eq.
(34) evaluated at E, we arrive at the density function

0<a, <1

20lx = Q2[(C/BY(C — B)o? +

(C/ANC — A)8,2 + 2(C/B)pzbw. —

2(C/A)p2bu, — p(1 — aw Ay Adu —

o1 — a, Bi/B)v.?] + p(Awu.? +
A2 (37)

where A = 4,D,, B = B/D,, and ¢ = C/D., in which D, =
2l. Expression (37) leads to the Hessian density matrix
¢

E(é — B)Q.2 0
) 0 %(6*—21)982
[R]z = . ) %ng,z
] gng,z 0

Using Sylvester’s criterion, we conclude that the matrix

[3C]e is positive definite if the following inequalities are
satisfied

C>B, C>4
At > QM1 — ey Ay/A + (C/A) 2U(p2)mas/ (C — A)] 30b)
An® > Q21 — o, By B + (C/B)2l(pz) mex/ (€ — B)] (

Two major conclusions can be drawn from inequalities (39):

1) For spin stabilization the spinning motion should be
imparted about the axis of maximum moment of inertia.

2) Spin stabilization is possible if the initial unperturbed
spin €, is smaller than the first natural frequency associated
with the vibration of the rods in both z and y directions’
For a given body, the value of Q, required for stability is
dictated by the mass distribution of the elastic members ac-
cording to inequalities (39b). The satisfaction of inequalities
(39b) is virtually ensured if the rods are very stiff.

These conclusions are appreciably more general than those
reached in Ref. 5 because the present analysis is not restricted
to bodies for which B = A4 or to antisymmetric elastic de-
formations, as the analysis of Ref. 5 is. Moreover, since
criteria (39) are in closed form they lend themselves to an easy
physical interpretation, which furnishes a more complete
picture of the stability problem and leaves a numerical solu-
-tion at a clear disadvantage. Criteria (39) are in general
more stringent than necesssary since the present method leads
to sufficient but not necessary conditions for stability. This
is so because testing the positive definiteness of H is replaced
by the testing of the functional «, Eq. (22), where H > «.
Moreover, the testing of k for positive definiteness is further
replaced by the testing of the density #. 1f we were to plot
the regions of stability in a parameter space, then the actual
regions of stability would always be greater than (or equal to)
the stability regions obtained by using conditions (39).
Hence, if inequalities (39) are satisfied we can be sure of the
motion stability.

To develop a better appreciation of the problem, we con-
~sider the case of uniform rods. The assumption of uniform
rods does not affect criteria (39a). On the other hand, de-
noting by A4, and B, the moments of inertia of the rigid body
alone, namely, the body occupying the domain D — D,, and

(392)

,OI:AW2 ~ 9,2<1 - au‘%ﬂ 0
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by m. = pl the mass of one rod, inequalities (39b) can be re-
written in the form .

2 _ [1 L Ra c 2ma(h + 1)? ]—m
An L+ Ra " Aol + By C — Ao(l + Ra)

(40)
2 _ [1 _ aRa c Ima(h 4 1) ]—m
Aw L+ Rs " Bo(l + Rs)C — Bo(l + Rp)

where Ry = A;/4oand R = Bi/By. To interpret the first of
inequalities (40), we plot the curves ©,/A1. vs C/A, obtained
by replacing the inequality sign by the equal sign and regard-
ing R4 as a parameter. Figure 3 shows plots for a. = 0, 1 and
h = 2l. For a given value of R4, the curve corresponding to a
certain value of a. provides the boundary of the stability re-
gion, where the stability region is that below the curve. The

¢ 2
0 E pZQ,

C .,
——ped, 0
(38)

B
0 P[A1v2 - Qaz(l - avﬁ)]—‘

stability region increases with increasing .. For a given Ry,
the boundary curve lies somewhere between the curves cor-
responding to «. = 0 and a. = 1, namely, in the shaded re-
gion bounded by these curves. On physical grounds, the
actual boundary curve cannot coincide with either of the
curves o = 0 or au = 1. However, because the shaded re-
gion is sufficiently narrow compared with the corresponding
stability region, the actual value of a. does not appear to be
particularly significant. The second of inequalities (40)
yields a diagram identical in every respect to Fig. 3 but with
A, a., By, and Ep replacing Ay, o, A, and R4, respec-
tively.

Comparing Fig. 3 with Fig. 2 of Ref. 5 (note that the
parameters were chosen so that the two diagrams are compa-
rable), it is clear that there is general agreement between the
closed-form eriteria obtained here and the numerical results of
Ref. 5. However, the regions of stability obtained here are
smaller than those of Ref. 5, which is to be expected because
the present method leads in general to more stringent stability
requirements than an infinitesimal analysis would.

Summary and Conclusions

A new method for the stability analysis of hybrid systems
possessing motion integrals is presented. The method is
based on the Liapunov direct method and considers for testing
purposes a hybrid expression, namely an expression which is
both a function and a functional simultaneously. The pro-
cedure is suitable for the stability investigation of bodies
which are part rigid and part elastic and or which there exists
momentum integrals. It involves the construction of a Lia-
punov functional which takes into aeccount automatically
the momentum integrals, thus reducing the number of
generalized coordinates. The method represents an extension
of the theory developed by the author in Ref. 6 and it is as
general as it is powerful. When the application of the method
is possible, closed-form stability criteria can be derived with a
minimum amount of effort. The theory is suitable for the
stability analysis of spinning flexible bodies free of external
torques.

As an application of the general theory, the case of torque-
free spinning satellite with flexible antennas, simulated by
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thin rods, is solved. The analysis yields a set of stability
criteria involving the system parameters such as the body
moments of inertia, the length and mass distribution of the
elastic rods, the lowest natural frequencies of the rods, and the
satellite spin velocity. The power of the method is illustrated
by the relative ease with which closed-form stability criteria
are derived and by the amount of information which ean be
extracted from their ready physical interpretation. In par-
ticular, the analysis shows that, for stability, the spinning mo-
tion is to be imparted about the axis of maximum moment of
inertia. This is the well-known “greatest moment of inertia”
requirement. Moreover, the initial spin velocity €. should
not be merely lower than the first natural frequencies A1, and
Ay, associated with the transverse vibration of the rods (as
the frequency of simple harmonic excitation of the rods
should be if resonance is to be prevented), but the ratios
Q./Aw. and Q./A;, are dictated by the system parameters.
Of course, for very stiff rods the natural frequencies A, and
Ay, may be sufficiently high that the satisfaction of eriteria
(40) is ensured.
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Buckling of a Thin Annular Plate under Uniform Compression

SAURINDRANATH MAJUMDAR*
ArResearch Manufacturing Company, Torrance, Calif.

The buckling of a circular annular plate with the outer edge clamped, the inner edge free,
and loaded with uniform radial compressive force applied at the outside edge has been studied
both theoretically and experimentally. Solution to the differential equation for buckling
has been sought in the form w = A4,(r) cosnf, n = 0,1,2, . ...The differential equation has been
solved exactly for n = 0 and n = 1 and approximately for higher values of n as well as for n =
0 and n = 1. The solutions indicate that for small ratios of inner to outer radius the plate
buckles into a radially symmetric mode. When the ratio of the inner to outer radius exceeds
a certain value, the minimum buckling load corresponds to buckling modes with waves along
the circumference. The number of waves depends on the ratio of the inner and the outer
radii. Tests were carried out with thin aluminum plates, and the results corroborate the

theoretical predictions.

Nomenclature

a = outer radius

b = 1inner radius

D = bending stiffness of the plate = Eh3/[12(1 — »?)]

E = modulus of elasticity of the plate

h = thickness of plate

T = temperature rise above ambient

14 = potential energy

w = transverse displacement perturbation

v = Poisson’s ratio

as,as = coefficient of thermal expansion of aluminwm and steel,
respectively

e = theoretical rise of temperature above ambient for
buckling

Ny = radial compressive force at the outer edge

Ny, = radial compressive force at the outer edge at buckling

N, = radial stress resultant

Nog = circumferential stress resultant

N.g = shear stress resultant

T, = experimentally observed rise of temperature above

ambient for buckling
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Introduction

HE elastic stability of a thin circular plate was studied

first by Bryan® in 1891. He showed that the minimum
buckling load for a circular plate without a central hole
corresponds to a radially symmetric buckling mode. The
buckling of a circular annular plate subjected to shearing
forees distributed along the edges was first studied by Dean.?
Since then, many researchers have investigated the buckling
of a circular annular plate subjected to various loading
conditions. Willers? considered the case of a plate subjected
to bending moment caused by initial stresses. Some of these
cases have been extended to plates with varying thickness.4™7
The buckling of a thin circular annular plate subjected to
equal compressive loadings at both the edges has been
studied by Olsson,® Schubert,® and Yamaki.®® Olsson and
Schubert considered only radially symmetric buckling modes.
Yamaki showed that, for some cases, a radially symmetric
buckling mode does not correspond to the lowest buckling
load.

The buckling of a circular annular plate clamped at the
outer edge with the inner edge free and subjected to uniform
radial compression at the outer edge was first studied by
Meissner.!* He assumed a radially symmetric buckling
mode and obtained a relationship between the buckling
load and the ratio between the inner and the outer radii.



