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A Method for the Liapunov Stability Analysis of
Force-Free Dynamical Systems

LEONARD MEIROVITCH*
University of Cincinnati, Cincinnati, Ohio

A new method for the stability analysis of force-free dynamical systems described by simul-
taneous sets of ordinary and partial differential equations of motion is presented. Such sys-
tems, referred to as hybrid, arise naturally in connection with the motion of spinning flexible
bodies. The method is based on Liapunov's second method and works directly with the hy-
brid system of equations. It involves the construction of a Liapunov functional that takes
into account automatically motion integrals resulting from the absence of external forces on
the system. The general theory is particularly suitable for the stability analysis of torque-free
spinning satellites containing distributed elastic members. As an illustration, the case of spin
stabilization of a satellite with flexible appendages is solved.

Introduction

THE rotational motion of a torque-free rigid body is known
to be stable if the rotation takes place about an axis cor-

responding to the maximum or minimum moment of inertia,
but the motion is unstable if the rotation takes place about
the axis of intermediate moment of inertia (see, for example,
the text by Meirovitch,1 Sec. 6.7). The stability of a force-
free system of bodies, where the bodies can rotate with dif-
ferent angular velocities, has been investigated by Pringle,2
who placed special emphasis on dual-spin systems. A matrix
formulation of the problems just described has been provided
by Likins and Roberson.3 The effect of elastically connected
moving parts on the stability of motion of a rigid body has
been studied by Nelson and Meirovitch.4 The formulations
of Refs. 1-4 are in terms of ordinary differential equations and
the stability analyses are based on the Liapunov direct
method. Flexible parts are represented in the last three
references by discrete models.

In one of the first attempts to treat rigorously distributed
elastic members, the stability of motion of a spinning sym-
metric body which is part rigid and part elastic has been in-
vestigated by Meirovitch and Nelson.5 The mathematical
formulation in Ref. 5 consists of a set of ordinary differential
equations for the rotational motion and another set of partial
differential equations describing the elastic displacements.
We shall refer to a system of both ordinary and partial dif-
ferential equations as "hybrid." The hybrid system of Ref. 5
has been reduced to a system consisting entirely of ordinary
differential equations by means of the modal analysis,
whereby the displacement of a given point in the continuous
elastic members is represented by a finite series of appropriate
eigenfunctions multiplied by time-dependent generalized co-
ordinates. The stability of the resulting discrete system
has been investigated by means of an infinitesimal analysis
and the effect of the flexible parts on the motion stability has
been displayed in the form of diagrams relating various
parameters of the system.
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A general and rigorous method for the stability analysis of
systems containing distributed elastic parts has been de-
veloped by Meirovitch.6 The method represents an exten-
sion of the Liapunov second method and works directly with
the hybrid system of differential equations (in the sense de-
fined previously), instead of the common practice of spatial
discretization4-5 or modal truncation.5 As an application, the
case of gravity-gradient stabilization of a satellite with flex-
ible appendages is solved.

The present paper extends the formulation of Ref. 6 to the
case in which the system possesses angular momentum in-
tegrals. The formulation is somewhat related to the problem
of Ref, 3. However, whereas the formulation of Ref. 3 is re-
stricted to discrete systems but can accommodate multispin
bodies, the present formulation is confined to single-spin but
permits the treatment of distributed elastic systems. This
new formulation can be readily used for a large class of prob-
lems involving the stability of torque-free flexible satellites.
As an illustration, the general theory presented here is applied
to the stability analysis of a spinning satellite resembling that
of Ref. 5. The power of the method is clearly demonstrated
by the fact that it permits the derivation of closed-form
stability criteria, in contrast with the criteria of Ref. 5 ob-
tained numerically. In addition, the results derived here are
more general in nature, as certain restrictions placed on the
system of Ref. 5 have been relaxed. As expected, a com-
parison of the criteria derived by means of the present method
with those derived in Ref. 5 using an infinitesimal analysis
reveals that the present method leads to more stringent but
more complete stability requirements.

General Problem Formulation

Let us consider a body of total mass m moving relative to an
inertial space XYZ, as shown in Fig. 1. The entire body or

Fig. 1 The flexible body in an inertial space.
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parts of the body are capable of small elastic deformations
from a reference equilibrium position coinciding with the
undeformed state of the body. Next we define two sets of
body axes, the set xyz with the origin at point 0 and coinciding
with the principal axes of the body in the undeformed state,
and the set £)jf which is parallel to xyz but has the origin at
the center of mass c of the deformed body. We note that £??f
is not a principal set of axes. The set xyz serves as a suitable
reference frame for measuring elastic deformations whereas
the set £vjf is more convenient for expressing the over-all mo-
tion. The position of a typical point in the undeformed body
relative to axes xyz is denoted by the vector f r = xi +
yj + zk and the elastic displacement of an element of mass
dm, originally coincident with that point, by the vector
u = u(x,y,z,t)i + v(x,y,z,t)j + w(x,y,z,t)k, where i, j, k are
unit vectors along axes x, y, z (or axes £, 77, f), respectively.
The radius vector from point 0 to c is given by rc = m~lfm(r +
u)dm = m^fmUdm, where we note that fmrdm is zero by
virtue of the fact that 0 is the center of mass of the unde-
formed body. All integrations involved in this paper are
carried over the domain occupied by the body in undeformed
state, which is designated as the reference state.

From Fig. 1, we conclude that the position of the mass
element dm relative to the inertial space is Rd = Rc +
r + uc, where uc = u — rc = uci + vcj + wck represents the
displacement vector measured with respect to axes J^f and
Rc is the position of the origin of these axes relative to the
inertial space. Assuming that axes xyz, hence also axes £rj£,
rotate with angular velocity o> = co^i + toj + co^k relative to
the inertial space, and denoting by uc' = uci + vcj + wck the
velocity of dm relative to £??f due to the elastic effect, it is
shown in Ref. 6 that the kinetic energy has the expression

T = i
X (1)

where Jd is the inertia dyadic of the deformed body about
axes $-v]£. The elements of the dyadic are

J& = Sm[(y + vcy + (z + wc)*]dm (2a)

Jw = fm[(x + ucY + (z + wcy\dm (2b)

Jff = /«[(* + ucy + (y + ve)*]dm (2c)

J*n = Jrf = Sm(x + uc)(y + vc)dm (2d)

Jtf = J& = Sm(x + uc)(z + wc)dm (2e)

Jrf = Jto = f**(y + «0(2 + wc)dm (2f)

The kinetic energy can be written conveniently in terms of
matrix notation. If {Rc} is the column matrix corresponding
to Rc, {co} the column matrix corresponding tow, [J] the sym-
metric matrix whose elements are the elements of the dyadic
Jd, and {uc'\ the matrix representation of the vector uc', then
Eq. (1) can be rewritten in the form

T = $m{Ae}*{Ac} + *{«} *[/]{«} +
{K}T{u} + J/m{iie'}r{ii.'

where {K} is the column matrix with the elements

K$ = fm[(y + Ve)we — (z + Wc)vc]dm
Kr, = fm[(z + wc)dc — (x + Uc)wc]dm

^f = fm[(x + uc)vc — (y + vc}iic\dm

(3)

(4a)

(4b)

(4c)
The angular velocity components co^, co^, co^ do not represent

time rates of change of certain angles but nonintegrable
combinations of time derivatives of angular displacements.
They are sometimes referred to as time derivatives of quasi-
coordinates. Denoting by 0» and 0* (i = 1,2,3) the true angu-

f Vector quantities are denoted by boldface type.

lar displacements and their time rates of change, the angular
velocity vector can be written in the matrix form {co} =
[0]{0}, where {0} is the column matrix with elements Bi(i =
1,2,3) and [0] is a 3 X 3 matrix, whose elements depend on
the order of the three rotations 0* used to produce the orienta-
tion of axes £Tjf relative to an inertial space. In view of this,
the kinetic energy can be written in terms of true angular
velocities as follows
T =

in which the notation

[I] = [Q]'

(5)

(6)

has been adopted.
The potential energy arises primarily from two sources,

namely gravity and body elasticity. The gravitational po-
tential energy is assumed to be very small compared with the
kinetic energy, or the elastic potential energy, and will be
ignored. The elastic potential energy, denoted by FEL and
referred to at times as strain energy, depends on the nature
of the elastic members and is in general a function of the
partial derivatives of the elastic displacements u, v, w with
respect to the spatial variables x, y, z. Since uc, vc, wc differ
from u, v, w by xc, ye, ze, respectively, where the latter are in-
dependent of the spatial variables, FEL can be regarded as
depending on the partial derivatives of uc, ve, wc with respect to
x, y, z. We assume that FEL is a function of d2wc/d#2, &uc/
dxby, . . ., d2wc/c)22 but this assumption in no way affects the
generality of the formulation. This particular functional
dependence of FEL should be regarded as mere scaffolding
used in the construction of a general theory, as the final
formulation is expressed in a form which involves the partial
derivatives only implicitly.

The system differential equations can be obtained by
means of Hamilton's principle. To this end, a brief discussion
of the generalized coordinates is in order. The motion of the
mass center c is generally assumed not to be affected by the
motion relative to c, so that it is possible to solve the motion of
c independently of the motion relative to c. As a result, the
motion of c, referred to as orbital motion, can be regarded as
known. We shall confine ourselves to the case in which the
first term on the right side of Eq. (5) reduces to a known con-
stant, so that the term can be ignored. This is clearly the
case when the orbit is circular, or the motion of c is uniform or
zero. It follows that the system generalized coordinates are
the three rotations 6t(t) and the three elastic displacements
uc(x,y,z,t) vc(x,y,z,t), wc(x,y,z,t). The elastic displacements
are defined only throughout the domain Z)e, namely the sub-
domain of D corresponding to the elastic continuum, where D
is a three-dimensional domain corresponding to the entire
body. The domain De is bounded by the surface S.

For the holonomic system at hand, Hamilton's principle
has the form

••ft Ldt = 0

where the motion must be such that the end conditions

50i = 602 = 60s = duc = dvc = dwc = 0 at t = ti, U

(7)

(8)

are satisfied. The integrand L in Eq. (7) is the Lagrangian
which has the general functional form

L = T - FEL = fi£(Oi,6i,Uc,Vc,.. .,we,
. . ,dWdz2)dD (9)

in which L is the Lagrangian density.
An application of Hamilton's principle leads to the system

Lagrangian equations of motion. Details of the derivation
are given in Ref. 6 and will not be repeated here. Instead we
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quote directly from Ref. 6 the ordinary differential equations
for the angular displacements

1,2,3 (10)
and the partial differential equations for the elastic displace-
ments

+ £uc[uc,vc,wc} + QUc = 0 (lla)

£vc[uC)vC)wc] + QVc = 0 (lib)

+ £.c[wc,*;c,wc] + QWc = 0 (lie)
where Eqs. (11) must be satisfied at every point of the domain
De. Moreover, Eqs. (11) are subject to the boundary condi-
tions

T*j[Uc,Vc,we]''Bk[Uc,Vc,Wc] = OonS,; = 1,2; k = 3,4 (12)

The differential operators £(£ue,£ve,£wc), 'B3-(B:iUc,BjVc,BjWc),
and Bjfc(£fcWc, Bkvc, Bkwc) represent vectors defined by the fol-
lowing integration by parts

By[wc,«c^c]'B*[^c,Wc,Wc]|5,; = 1,2; A; = 3,4 (13)
Since in our case the boundary conditions result from two
integrations by parts, only two of the combinations in Eq.
(12) must be satisfied at every point of /S, where the indices
j and k are different for each combination. We note that the
partial derivatives 52^c/^2, d2wc/dxdz/, . . . , d2wc/dz2 enter
into Eqs. (11) and (12) only implicitly through the differential
operator vectors <£, By, and B*, thus lending substance to a
statement made earlier regarding the generality of the formu-
lation. The quantities QUc, QVc, QWc represent distributed
internal damping forces which depend on the elastic motion
alone and not on the rotational motion. It should be pointed
out that the damping forces were added afterward, as such
forces cannot be treated by means of Hamilton's principle.

Introducing the generalized momenta
p6i = i = 1,2,3

uc =
where the latter three are momentum densities, it is shown in
Ref. 6 that the second-order Lagrangian equations, Eqs. (10)
and (11), can be converted into twice the number of first-
order Hamiltonian equations having the form

pdi = -d#/50;, i = 1,2,3 (15a)

vc = wc =

QUc

+ £ve(uc,vc,we) + Qvc (15b)

£Wc(uc,vc,wc) -f QWc

where Eqs. (15b) must be satisfied at every point of De. In
Eqs. (15), H is the Hamiltonian defined by

H = Pefii + De (pucuc + pvcvc + pWcwc)dDe - L (16)

and 6 is the corresponding Hamiltonian density. It should be
noticed here that the Hamiltonian has a hybrid form as it is a
function and a functional at the same time. The equations
for the elastic motion are subject to the same boundary condi-
tions, Eqs. (12). When the kinetic energy is quadratic in the
generalized velocities, the Hamiltonian reduces to the form

H = T + 7EL

which is recognized as the system total energy.
(17)

Stability Analysis
A general and rigorous method for the stability analysis of

hybrid systems of equations has been developed in Ref. 6.
We shall not present all the details here but only summarize
the main features.

Consider the system x = X(x) in which x represents an
element in a space which for a hybrid system can be regarded
as the cartesian product of a finite dimensional vector space
and a function space, and define a scalar function U(x) such
that £7(0) = 0. The total time derivative of U along a tra-
jectory of the system is defined by U = dU/dt = V£/-x =
VC7-X. Next consider the following theorems:

Theorem I: If there exists for the system a positive (nega-
tive) definite function C7(x) whose total time derivative
Z7(x) is negative (positive) semidefinite along every trajectory
of the system, then the trivial solution x = 0 is stable.

Theorem II: If the conditions of Theorem I are satisfied
and if, in addition, the set of points at which U(x) is zero con-
tains no nontrivial positive half-trajectory, then the trivial
solution is asymptotically stable.

Theorem III: If there exists for the system a function
U(x) whose total time derivative U(x) is positive (negative)
definite along every trajectory of the system and the function
itself can assume positive (negative) values in the neighbor-
hood of the origin, then the trivial solution is unstable.

Theorem IV: Suppose that a function U(x) such as in
Theorem III exists but for which U(x) is only positive (nega-
tive) semidefinite and, in addition, the set of points at which
17 (x) is zero contains no nontrivial positive ha If-trajectory.
Moreover, in every neighborhood of the origin there is a
point x0 such that for arbitrary to > 0 we have U(xQ) >
0(<0). Then the trivial solution is unstable and the trajecto-
ries x(x0, t0, t) for which (7(x0) > 0(<0) must leave the open
domain ||x|| < e as the time t increases.

A function U satisfying any of the preceding theorems is re-
ferred to as a Liapunov function. For a hybrid system it is
both a function and a functional simultaneously but will be
referred to as a Liapunov functional.

Using the results derived in the section General Problem
Formulation, it is not difficult to show that

H = Qvcvc + QWcwc)dDe (18)
It is reasonable to assume that the damping forces QUc, QVc)
QWc are such that H is negative semidefinite

H < 0 (19)
Moreover, due to coupling, the damping forces are never
identically zero at every point of the phase space except at an
equilibrium point, where the phase space, denoted symboli-
cally by S, is the space defined by the generalized coordinates
and the conjugate momenta, or alternatively the generalized
coordinates and velocities. In view of this, the Hamiltonian
may qualify as a Liapunov functional. Indeed, according to
Theorem II, if H is positive definite at an equilibrium point,
then the equilibrium is asymptotically stable and H can be re-
garded as a Liapunov functional. On the other hand, if H
is not positive definite and there are points for which it is
negative, then by Theorem IV the equilibrium point is
unstable.

The equilibrium points of the system are the solution of the
equations

bff/dpfc = 0, - ZH/bBi = 0, i = 1,2,3 (20a)

wc = 0
= 0

= 0

= 0

where Eqs. (20b) must be satisfied at every point of De>
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Assuming that in the elastic potential energy the displace-
ments u, v, w (hence uc, vc, wc) are independent of one another,
it is shown in Ref . 6 that

v£v[v] + w£w [w]dDe >
+ AiA2 + Ai«,W)dZ>. (21)

where p is the mass density and Aiu
2, Aiv

2, Alw,2 are the lowest
eigenvalues associated with the vibrations u, v, w, respectively.

Hence, let us introduce the functional

K = T + i/AP(Ai,W + AiAe2 + kiJwfidD. (22)
Now, because H > K, it is sufficient to show that K is positive
definite for the system to be asymptotically stable.

Systems Free of External Forces

When there are no motion integrals, the state at time t of
the hybrid system considered is given by an element in a
space S which can be regarded as the cartesian product of the
finite dimensional vector space defined by 0t-, p& (i = 1,2,3)
and the function space defined by uc, vc, wc, puc, pvc, Pwc.
The space S is simply the phase space. Alternatively, the
space can be regarded as the cartesian product of the vector
space defined by 0<, 6t(i = 1,2,3) and the function space de-
fined by uc, vc, wc, uc,vc,wc. The motion of the system can be
interpreted as a continuous mapping of the space S onto it-
self. This implies that if the state of the system at a given
time is known, then the state is known for any subsequent
time.

Under certain circumstances the system possesses motion
integrals. For example, such integrals occur when the system
is free of external forces, in which case the motion integrals
are simply momentum integrals. These integrals can be re-
garded as constraint equations relating the system velocities.
Constraints may be interpreted as restricting the motion to a
subspace of a correspondingly smaller dimension.

Let us assume that the system considered is free of external
forces, so that the three torque components about the mass
center c are zero. It follows that the angular momentum
vector about c is conserved
Lc = /m(r + uc) X |V + o> X (r + uc)]dm =

[3 = const (23)

in which (3 denotes the constant angular momentum vector.
In matrix notation, Eq. (23) assumes the form

[/]{«} + {K} (24)

where [J] is the inertia matrix of the deformed body, namely,
the matrix representation of the inertia dyadic whose elements
are given by Eqs. (2), and {K} is the column matrix of the
angular momentum components due to the elastic motion;
the elements of {K} are given by Eqs. (4). Clearly, {/3} is
the matrix representation of the vector (3.

Equation (24) can be used to eliminate the angular veloci-
ties Bi(i = 1,2,3) from the kinetic energy. Indeed, premulti-
plying Eq. (24) by [J]^1 and rearranging, we obtain

Introducing Eq. (25) into Eq. (3), and ignoring the term due
to the orbital motion, we can write the kinetic energy in the
form

T = T2 + To (26)
in which

is a quadratic expression in the elastic velocities uc, vC) wC) and

is an expression in the angular coordinates and elastic dis-

placements alone, hence it contains no velocities. It turns
out that not all three angular coordinates are present in TQ
but only two of them. To show this, we denote by /30 the
magnitude of the initial angular momentum vector, assume
for convenience that the direction of the angular momentum
vector coincides initially with the inertial axis Z, and express
the angular momentum matrix {ft} in the form ($o{l}, where
{1} is the column matrix of the direction cosines l%z, l^z, kz
between Z and axes £, 77, f, respectively. These direction
cosines can be expressed in terms of only two angular co-
ordinates.

Inserting Eq. (26), in conjunction with expressions (27)
and (28), into Eq. (22), we conclude that the functional K can
be written in the form

in which KI = T2 and
(29)

e (30)

where {uc} is the column matrix of the elastic displacements
uc, vc, wc and [Ai2] is a diagonal matrix of the lowest eigen-
values associated with these displacements. The functional
£2 can be regarded as a modified dynamic potential. By virtue
of inequality (21), we conclude that K2 is in general smaller
than (or equal to) the ordinary dynamic potential T0 + FEL.

But for T to be positive definite for all {ft}, T% must be
positive definite for all { uc] . Hence, we conclude that to show
that K is positive definite it is sufficient to show that K2 is
positive definite. To establish the positive definiteness of /c2,
we consider the possibility of constructing a density function
/c2 associated with /c2 for every point of the elastic domain De
and attempt to prove that the function is positive definite at
every such point. The conditions for the positive definite-
ness thus obtained are generally more stringent than neces-
sary.

To obtain the testing density function K2, we recall that the
inertia matrix [J] of the deformed body contains the elastic
displacements uC) vc wC) which are assumed to be small. De-
noting by [/]o the inertia matrix of the body in un deformed
state and by [J]i the change in the inertia matrix because of
the elastic deformations, we Jiave

[J] = Ulo + (J]i (31)
Since [J]i is small compared with [/]0, it is not difficult to
show that
\V"\ _ r 7"1 — I r>u r 7~1 —1 F 7"! —If 7"! F 7"! —1 II- J — IV J —- IV Jo — IV Jo IV JilV Jo I

where [K] denotes the reciprocal of [J]. We shall be con-
cerned with the case in which it is possible to define the density
matrix [K] satisfying the relation

[K] = fDe[K]dDe (33)
so that the testing density function can be written in the form

To test the density function /c2 for positive definiteness in the
neighborhood of an equilibrium point E, we define the 5 X 5
Hessian density matrix [3C]^ as the matrix of the coefficients
associated with the quadratic form /c2|#, where the latter is
simply the value of £2 in the neighborhood of the equilibrium
point in question. The positive definiteness of [3C]# can be
ascertained by means of Sylvester's criterion (see Ref. 1, Sec.
6.7).

At this point it is appropriate to mention that it is not al-
ways possible to construct the density function £2. In some
cases the difficulty lies in defiping a density matrix [K], dif-
ficulty which can be traced to the last term in Eq. (32). How-
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ever, this problem may be overcome at times by judicious use
of Schwarz's inequality for functions. In other cases the dif-
ficulty is caused by coupling of the elastic displacements.
Such coupling can be introduced by the motion of the mass
center of the deformed body relative to the undeformed
state. It must be pointed out, however, that in many analy-
ses the motion of the mass center is ignored by virtue of the
assumption of antisymmetric motion. Hence, when the
assumption of antisymmetric motion can be safely made, this
difficulty can be circumvented with ease. The question re-
mains as to the procedure to be used when problems en-
countered in the construction of the density function £2 can-
not be overcome. In such cases it may be advisable to use
modal analysis in conjunction with series truncation (see, for
example, Ref. 5) in order to derive a Hessian matrix [5C]^.
To this end, we refer to Eqs. (17) and (26), consider the test-
ing function H2 = TO + FEL, solve the eigenvalue problem
associated with the vibrations u, v, w, and represent these dis-
placements by finite series of corresponding eigenfunctions
multiplying generalized coordinates. However, whereas the
Hessian matrix derived from Eq. (34) is a 5 X 5 density
matrix, the Hessian matrix obtained by modal analysis is not
a density matrix and its order is at least 5 X 5 , the order de-
pending on the number of eigenfunctions used in the series
representing the elastic displacements. It must be stressed
that in general it is much more laborious to obtain the Hes-
sian matrix by modal analysis than the Hessian density ma-
trix associated with Eq. (34). This statement is particularly
true when the eigenvalue problem associated with u, v, w
cannot be readily solved.

Stability of High-Spin Motion of a
Flexible Satellite

As an illustration of the method presented, we shall in-
vestigate the stability of a spinning satellite simulated by a
rigid body with two flexible thin rods, as shown in Fig. 2a.
In undeformed state the body possesses principal moments of
inertia A, #, C about axes x, y, z, respectively, and the rods
are aligned with the z axis. The body is initially spinning un-
deformed about axis z with angular velocity 12S. The problem
resembles that of Ref. 5 but, by contrast, the solution of Ref. 5
is obtained by means of an infinitesimal analysis under re-
strictive circumstances. Specifically, the body considered in
Ref. 5 possesses equal moments of inertia about axes x and y
and, moreover, the elastic motion is assumed to be antisym-
metric, so that point c coincides with point 0 at all times. No
such restrictions are placed here. The mathematical model is
the same as that used in the illustrative example of Ref. 6.
However, whereas in Ref. 6 the case of gravity-gradient
stabilization was investigated, here the spin stabilization is
being considered.

The domain of the elastic continuum is simply De:h < z <
h + I, — (h + 1) < z < —h. Hence, r = xi + yj + zk over
D — De and r = zk over De. Assuming only flexural trans-
verse vibration, it follows that u = ui + vj, so that uc =
uci + vcj and rc = xc\ + ycj. From Eqs. (2) we conclude that

1.0 I.I 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
C /A 0

—— RESULTS OF PRESENT INVESTIGATION
--- RESULTS OF REFERENCE 5

Fig. 3 Stability regions in the parameter plane.

the moments and products of inertia of the deformed body
have the values

so that

/« = A +
Jm = B +

• = C+ fD«

'A 0 0"

(35)

+ Vc*)dzt = fnepzvcdz

0 0

0 0 <7_
fpv^dz —fpucVcdz —fpziicdz

—fpu^cdz fpuc
2dz —fpzvcdz

_—fpzucdz — J

(36)

where all integrations in [J]i are carried over De.
We are interested in the stability of pure spin about axis z.

The equilibrium configuration corresponding to pure spin is
given by

E:6i = 0 (i = 1,2) and uc = vc = 0

Since in the equilibrium configuration the body spins about
axis z with angular velocity 125, where z coincides with the
inertial axis Z, it follows that /30 = C£ls. Moreover, from
Fig. 2b we conclude that the direction cosines have the values
hz = — cos0i sin02, l^z = shift, and l$z = cosft cos02. Intro-
ducing all these values into the first term in Eq. (30), con-
sidering Eq. (32), and ignoring terms in ft, 02, ucj and vc of
order larger than two (as well as constant terms), we can
write

(C/A)(C -
Y + (l/B)(fDepzvcdzY -

2(C/A)d2fDepzucdz
We notice that in the above expression there are two terms
involving squares of the integrals SDepzucdz and fDepzvcdz,
which prevents a ready definition of a density function.
Using Schwarz's inequality for functions, we have

0 < < fDepz2dzfDepuc
zdz

Fig. 2 a) The flexible satellite: b) the satellite rotational
motion.

where the first equality sign holds if uc is symmetric in z and
the second one when uc is proportional to z. Since in rota-
tional motion the elastic displacement uc is not likely to re-
main symmetric at all times, and, moreover, uc cannot be
proportional to z, it follows that both equality signs must be
ignored. Introducing the notation Al = fDepz2dz, where Ai
is recognized as the moment of inertia about axis x of the
mass associated with the elastic continuum when in unde-
formed state, we can write

(SDepzucdzY = ctu 0 < au < 1
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Similarly, we have

^dz, 0 < av < 1

Although BI = Ai, we introduced a different symbol to keep
the notation consistent. Inserting these expressions into Eq.
(34) evaluated at E, we arrive at the density function

2/c2 E =
(C/A)(C -

2(C/A)pz02uc -
2(C/B)pzd1vc -

(37)

where A = A/De, B = B/De, and C = C/De, in which De =
21. Expression (37) leads to the Hessian density matrix

(C - 0

0

Using Sylvester's criterion, we conclude that the matrix
[3C]# is positive definite if the following inequalities are
satisfied

(39b)

OB, C> A (39a)
Alw

2 > 0S
2[1 - «« A!/A + (C/A) 2/(pz2)max/(C - A)]

A!/ > 125
2[1 - «. ByB + (C/£)2/(pz2)max/(C - B)]

Two major conclusions can be drawn from inequalities (39):
1) For spin stabilization the spinning motion should be

imparted about the axis of maximum moment of inertia.
2) Spin stabilization is possible if the initial unperturbed

spin £2S is smaller than the first natural frequency associated
with the vibration of the rods in both x and y directions!
For a given body, the value of £2S required for stability is
dictated by the mass distribution of the elastic members ac-
cording to inequalities (39b). The satisfaction of inequalities
(39b) is virtually ensured if the rods are very stiff.

These conclusions are appreciably more general than those
reached in Ref. 5 because the present analysis is not restricted
to bodies for which B = A or to antisymmetric elastic de-
formations, as the analysis of Ref. 5 is. Moreover, since
criteria (39) are in closed form they lend themselves to an easy
physical interpretation, which furnishes a more complete
picture of the stability problem and leaves a numerical solu-
tion at a clear disadvantage. Criteria (39) are in general
more stringent than necesssary since the present method leads
to sufficient but not necessary conditions for stability. This
is so because testing the positive definiteness of H is replaced
by the testing of the functional K, Eq. (22), where H > K.
Moreover, the testing of K for positive definiteness is further
replaced by the testing of the density /c2. If we were to plot
the regions of stability in a parameter space, then the actual
regions of stability would always be greater than (or equal to)
the stability regions obtained by using conditions (39).
Hence, if inequalities (39) are satisfied we can be sure of the
motion stability.

To develop a better appreciation of the problem, we con-
sider the case of uniform rods. The assumption of uniform
rods does not affect criteria (39a). On the other hand, de-
noting by AQ and BQ the moments of inertia of the rigid body
alone, namely, the body occupying the domain D — De, and

by me = pi the mass of one rod, inequalities (39b) can be re-
written in the form

jx r oi
Ai« L 1

2me(h

o_
Aiw

+ RA Ao(l + RA) C - A0(l + RA)

2me(h
(40)

RB) C -

where RA = Ai/Ao and RB = Bi/B0. To interpret the first of
inequalities (40), we plot the curves 12,/Ai« vs C/A0 obtained
by replacing the inequality sign by the equal sign and regard-
ing RA as a parameter. Figure 3 shows plots for au = 0,1 and
h = 21. For a given value of RA, the curve corresponding to a
certain value of au provides the boundary of the stability re-
gion, where the stability region is that below the curve. The

.»,(, - ̂
0

0
(38)

stability region increases with increasing au. For a given RA,
the boundary curve lies somewhere between the curves cor-
responding to au = 0 and au = 1, namely, in the shaded re-
gion bounded by these curves. On physical grounds, the
actual boundary curve cannot coincide with either of the
curves au = 0 or au = 1. However, because the shaded re-
gion is sufficiently narrow compared with the corresponding
stability region, the actual value of au does not appear to be
particularly significant. The second of inequalities (40)
yields a diagram identical in every respect to Fig. 3 but with
AIV, av, BQ, and RB replacing AI«, au, A0, and RA, respec-
tively.

Comparing Fig. 3 with Fig. 2 of Ref. 5 (note that the
parameters were chosen so that the two diagrams are compa-
rable), it is clear that there is general agreement between the
closed-form criteria obtained here and the numerical results of
Ref. 5. However, the regions of stability obtained here are
smaller than those of Ref. 5, which is to be expected because
the present method leads in general to more stringent stability
requirements than an infinitesimal analysis would.

Summary and Conclusions

A new method for the stability analysis of hybrid systems
possessing motion integrals is presented. The method is
based on the Liapunov direct method and considers for testing
purposes a hybrid expression, namely an expression which is
both a function and a functional simultaneously. The pro-
cedure is suitable for the stability investigation of bodies
which are part rigid and part elastic and or which there exists
momentum integrals. It involves the construction of a Lia-
punov functional which takes into account automatically
the momentum integrals, thus reducing the number of
generalized coordinates. The method represents an extension
of the theory developed by the author in Ref. 6 and it is as
general as it is powerful. When the application of the method
is possible, closed-form stability criteria can be derived with a
minimum amount of effort. The theory is suitable for the
stability analysis of spinning flexible bodies free of external
torques.

As an application of the general theory, the case of torque-
free spinning satellite with flexible antennas, simulated by
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thin rods, is solved. The analysis yields a set of stability
criteria involving the system parameters such as the body
moments of inertia, the length and mass distribution of the
elastic rods, the lowest natural frequencies of the rods, and the
satellite spin velocity. The power of the method is illustrated
by the relative ease with which closed-form stability criteria
are derived and by the amount of information which can be
extracted from their ready physical interpretation. In par-
ticular, the analysis shows that, for stability, the spinning mo-
tion is to be imparted about the axis of maximum moment of
inertia. This is the well-known "greatest moment of inertia"
requirement. Moreover, the initial spin velocity flc should
not be merely lower than the first natural frequencies Aiu and
Air associated with the transverse vibration of the rods (as
the frequency of simple harmonic excitation of the rods
should be if resonance is to be prevented), but the ratios
Os/AiM and fi./Ai,, are dictated by the system parameters.
Of course, for very stiff rods the natural frequencies AI« and
AIV may be sufficiently high that the satisfaction of criteria
(40) is ensured.

References
1 Meirovitch, L., Methods of Analytical Dynamics, McGraw-

Hill, New York, 1970.
2 Pringle, R., Jr., "Stability of the Force-Free Motions of a

Dual-Spin Spacecraft," AIAA Journal, Vol. 7, No. 6, June 1969,
pp. 1054-1063.

3 Likins, P. W. and Roberson, R. E., "Matrix Method for the
Liapunov Stability Analysis of Cyclic Discrete Mechanical Sys-
tems," Celestial Mechanics Journal, to be published.

4 Nelson, H. D. and Meirovitch, L., "Stability of a Non-
symmetrical Satellite with Elastically Connected Moving Parts,"
The Journal of the Astronautical Sciences, Vol. 13, No. 6, Nov.-
Dec. 1966, pp. 226-234.

5 Meirovitch, L. and Nelson, H. D., "On the High-Spin Motion
of a Satellite Containing Elastic Parts," Journal of Spacecraft and
Rockets, Vol. 3, No. 11, Nov. 1966, pp. 1597-1602.

6 Meirovitch, L., "Stability of a Spinning Body Containing
Elastic Parts via Liapunov's Direct Method," AIAA Journal,
Vol. 8, No. 7, July 1970, pp. 1193-1200.

SEPTEMBER 1971 AIAA JOURNAL VOL. 9, NO. 9

Buckling of a Thin Annular Plate under Uniform Compression
SAURINDRANATH MAJUMDAR*

AiResearch Manufacturing Company, Torrance, Calif.

The buckling of a circular annular plate with the outer edge clamped, the inner edge free,
and loaded with uniform radial compressive force applied at the outside edge has been studied
both theoretically and experimentally. Solution to the differential equation for buckling
has been sought in the form w = An(r) cosrifl, n = 0,1,2, . . . .The differential equation has been
solved exactly for n = 0 and n = 1 and approximately for higher values of n as well as for n =
0 and n = 1. The solutions indicate that for small ratios of inner to outer radius the plate
buckles into a radially symmetric mode. When the ratio of the inner to outer radius exceeds
a certain value, the minimum buckling load corresponds to buckling modes with waves along
the circumference. The number of waves depends on the ratio of the inner and the outer
radii. Tests were carried out with thin aluminum plates, and the results corroborate the
theoretical predictions.

Nomenclature
a = outer radius
b = inner radius
D = bending stiffness of the plate = Eh*/[l2(l - v*)]
E = modulus of elasticity of the plate
h = thickness of plate
T = temperature rise above ambient
V = potential energy
w = transverse displacement perturbation
v = Poisson's ratio
a A, &s = coefficient of thermal expansion of aluminum and steel,

respectively
dc = theoretical rise of temperature above ambient for

buckling
No = radial compressive force at the outer edge
Nocr = radial compressive force at the outer edge at buckling
Nr = radial stress resultant
Ne = circumferential stress resultant
Nre — shear stress resultant
To = experimentally observed rise of temperature above

ambient for buckling
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Introduction

THE elastic stability of a thin circular plate was studied
first by Bryan1 in 1891. He showed that the minimum

buckling load for a circular plate without a central hole
corresponds to a radially symmetric buckling mode. The
buckling of a circular annular plate subjected to shearing
forces distributed along the edges was first studied by Dean.2
Since then, many researchers have investigated the buckling
of a circular annular plate subjected to various loading
conditions. Willers3 considered the case of a plate subjected
to bending moment caused by initial stresses. Some of these
cases have been extended to plates with varying thickness.4"7

The buckling of a thin circular annular plate subjected to
equal compressive loadings at both the edges has been
studied by Olsson,8 Schubert,9 and Yamaki.10 Olsson and
Schubert considered only radially symmetric buckling modes.
Yamaki showed that, for some cases, a radially symmetric
buckling mode does not correspond to the lowest buckling
load.

The buckling of a circular annular plate clamped at the
outer edge with the inner edge free and subjected to uniform
radial compression at the outer edge was first studied by
Meissner.11 He assumed a radially symmetric buckling
mode and obtained a relationship between the buckling
load and the ratio between the inner and the outer radii.


